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In order for a mathematical model of a biomedical system to be
valuable for experimental and clinical research it must be
designed in accordance with the experimental or clinicalgem.

5.1 Introduction

Neurological and psychiatric disorders such as Parkirssgisease and clinical de-
pression are both diseases of the nervous system. Disafldifferent autonomic
functions, including disturbances of sleep, energy baaand hormonal secretion
also have their origin in brain dysfunctions. However, whiliseases associated
with energy control or hormonal secretion can be diagnoseméasuring specific
parameters (so-called biomarkers) such as blood glucdsernrone concentration,
diagnosis is much more difficult for psychiatric disordarsts as clinical depression
or manic-depressive states, also known as unipolar anddbigisorders.

Many of the neurological diseases can be attributed to Bpelisfunctions, e.g.
in the dopamine system for Parkinson’s disease, or thewiigin of cholinergic
receptors at the motor endplate in the case of Myastheniasg@seudo paralysis,
[11]). For sleep disorders and for clinical depression arahictdepressive states
on the other hand there are no specific biomarkers on whiajndsis and treat-
ment can rely. The disorders manifest in the patient’s clihpsychopathology and,
although attempts are being made to correlate differemh$oof depression with
over- or under-expression of particular genes, the diagns®ssentially based on
the doctor’s impression of the patient, statements by pesrselated to the patient,
and answers to standardized questionnaires [10].

An additional problem in the treatment of psychiatric ddns is obviously that,
while the disease manifests in the patient’'s behavior, trempaceutical treatment
interferes with cellular and subcellular mechanisms atlével of ion channels,
transporters and genes. Figure 5.1A illustrates the diffefunctional levels that
need to be brought together to achieve an understandingsé ttliseases that can
serve as the basis for a rational treatment:

Alteration of a single process at the cellular or subcetlidgel, by spontaneous
malfunction or due to the action of a drug, can drasticallgirade the intra-cellular
dynamics. This, in turn, can significantly alter the exdiigpband sensitivity of in-
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dividual neurons, thereby also changing the activity ofroaal networks. This may
again have consequences for the functionality of speciimtareas which finally

can lead to changes in sensory or motor functions, emotimosd, or behavior.

Moreover, since psychiatric disorders may originate ireaxal circumstances, the
proper understanding also requires insights into the seeausation cascade.

In addition, at all of these vertical levels there is a widega of systemic interac-
tions on the horizontal level, e.g., through the multipkerfinked second messenger
pathways, through the mutual interactions between ionmélanand via the signal
transmissions between individual neurons. These horamterdependences are
illustrated in Fig. 5.1B where we have drawn the connectemmeng some of the
different brain areas involved in the regulation of sleepeEsuch a simple diagram
demonstrates that it is not sufficient to understand how géamon the cellular or
subcellular levels affect the functioning of a specific hraiea, because the changes
will spread to and affect the function of other brain areawak.

This fantastic interconnectedness serves to make neusgsi@ms flexible and
adaptive on one hand and robust and self-maintaining ontkies. @\t the same time,
this interconnectedness is an essential preconditiorh®enormous information
handling capacity of the brain. However, this interconedoess also contributes to
making psychiatric diseases exceedingly difficult to ustierd and model. Despite
all its qualities, the human brain soon reaches its limitati@mpts to overlook
even a comparatively simple system, particularly if thisteyn includes feedback
mechanisms with delays, instabilities and nonlinear dyingghenomena.

The purpose of this chapter is to discuss different appresth neuronal mod-
eling and their physiological rationale. The so-calleddwctance-based approach
will be highlighted as a method that allows mathematical ei®tb be developed in
close agreement with the underlying physiological mectrasi With this approach
we can start to examine the causes of diseases and the atctiaigs in a clinical
and pharmacologically relevant perspective. We'll préssiamples of neuronal dy-
namics at various levels of the brain, ranging from simolagiof individual neurons
to complex interactions between different brain areasénctbntext of the so-called
sleep-wake cycle. We'll be particularly interested in dissions of physiologically
justified simplifications of the models and of the possipitif extending the models
to include different functional levels.

In this context, it is worth emphasizing that the obstaclked prevent a faster
progress and a more effective use of mathematical modetidgcamputer simu-
lations (biosimulation) in the life sciences are relateinarily to human commu-
nication problems across established disciplinary botiedaExperimentalists and
clinicians often have difficulties in exploiting the fantiasadvantages of a mathe-
matical description, while mathematicians, physicistandineers lack the required
understanding of physiological and pharmacological psses as well as of specific
problems in experimental and clinical research. Livingtegss, and particularly of
course the brain, represents an enormous challenge tdetseiences, but the chal-
lenge to understand such systems is in no way smaller forenatics and physics.
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5.1.1 Modeling Approaches in neuronal dynamics:
Problem-Oriented Simulations

The most ambitious modeling approaches attempt to représedifferent anatom-
ical levels in full structural and functional detail, thedbeknown example pre-
sumably being the 'Blue Brain’ project (http://bluebraipfl.ch/). The goal of this
project is to develop a fully realistic model of the brain.démous efforts from
a large group of scientists have been invested over sevegakyin order to col-
lect all the data necessary to implement such a model on dgda@percomputer.
At the present, the model considers about 200 differentsygfeneurons in the
somatosensory cortex, representing the neuronal netwiogksingle neocortical
column. Other large-scale modeling efforts are connectighl tive 'in silicon hu-
man’ (http://www.siliconcell.net) and the 'physiome’ {pt//physiome.jp/) projects.
These projects aim to bring together the actually existiugwidely distributed bi-
ological knowledge and modeling experience onto a commatigein which will
allow us to connect the different levels from molecular kiceto organ functioning
[63]. Such projects seem to be directly related with theditgancreasing informa-
tion exchange via the World Wide Net.

However, the question still remains as to what extent moalgtsychiatric dis-
order have to consider the whole spectrum of physiologicat@sses down to the
molecular level. This reflects back on the problem we disedigs the first chapters
of this book about the purpose of a model. Do we aim for a mdusldcan answer
all questions or would it be more rational to aim for a poitiaf models that each
can answer a specific set of questions?

Based on the so-called Neuron Field Theory, for instancéhemaatical models
of functional interactions between different brain areas successfully be imple-
mented without considering individual action potentiadpikes) and ion currents
[52]. (This approach will be discussed in more detail in Gkap). Interactions be-
tween different brain areas have also been modeled wittemsidering any electri-
cal activity at all, simulating only alterations in the dedility of neurotransmitters
[50]. Such approaches appear particularly suited in caimmewith psychiatric dis-
orders that are associated with imbalances among divexssrtitter systems, e.g.
with enhanced dopamine levels in schizophrenia [12].

In our point of view, it is not a question whether simplificais should be intro-
duced or not. The question is where and to what extent siroglifins can be ac-
cepted, or even are necessary to achieve a better insighhiedynamics of essen-
tial mechanisms. Indeed, significant understanding of erealrdynamics has been
gained from purely formal models of action potential getierg[19, 51, 39, 22]. An
example of the use of this type of functional modeling to diésthe dynamics of a
so-called tripartite system consisting of a pair of pre- past-synaptic neurons and
a glia cell will be discussed in Chapter 6. These examplesodsirate that there is
no rule to favor a particular modeling approach over otheus,that the approach
must depend on the purpose of the study. The present chaititdemonstrate the
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Fig. 5.1 The vertical scale of different functional levels (A) ane thorizontal scale of interacting

brain nuclei (B) in the examination of neurological and gsgtric disorders. The vertical scale
in A emphasizes the interdependencies among the diffevaictibnal levels that need to be con-
sidered especially in brain-related disorders that areifested at the behavioural level but most
likely originate from disturbances at the cellular and ihdar levels, which are also the main
targets for drugs. The horizontal scale in B is illustratathva selection of brain areas that have
to be considered in the context with mental disorders andcést®d disturbances of autonomic
functions, e.g., sleep, emotions, and stress responseabfiteviations are: LHA lateral hypotha-

lamic area; VLPO, SCN, and PVN respectively, are the veateoal preoptic, suprachiasmatic, and
paraventricular nuclei of the hypothalamus; MA and ACh &ermonoaminergic and cholinergic

nuclei of the brainstem. The abbreviations in italic cop@d to a variety of neurotransmitters and
hormones that are released by the above brain nuclei fomiation transmission.

use of a conductance-based approach to examine differgsigbbgical processes
in neurology and psychiatry.

5.2 Conductance-Based Modeling of Neural Dynamics

The conductance-based approach is used to implement nafdedsral systems at
the level of ion channels (Fig. 5.1). In the field of neuropblgyy, such models
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are broadly applied for simulation of neurons and synagsesiever, the approach
allows extensions both towards higher levels of the vercale in Fig. 5.1 and to
subcellular mechanisms such as second messenger functiayeae expression.

In this way, different types of neuronal networks can be giesil correspond-
ing to the specific brain areas and functions with physiaally appropriate con-
nections, as illustrated in an example of the horizontalestaFig. 5.1B. Similar
schemes could be drawn to illustrate horizontal interatiat other levels, not at
least for the interaction between different voltage- ameh$mitter-gated ion chan-
nels on which such conductance-based models are built up.

This theoretically describes the general strategy of agkiing the challenge of
connecting different functional levels and scales. In ficacthe realization of such
a concept with conductance-based models can easily leadaweawhelming num-
ber of variables and parameters which makes it hard to utedershe model’s dy-
namics, and sometimes even prevent elucidation of the ploggcally and patho-
physiologically relevant features.

Our conductance-based models are simplified significanthypared, for exam-
ple, to the original and widely-used Hodgkin-Huxley apmio$23]. However, by
contrast to other simplifications, e.g. the FitzHugh-Nagumodel [19], we have
specifically made sure that all model variables and paramegtain clear corre-
lations to physiological measures. Our goal is to achievéysiplogically based
model structure that allows simplifications and extensietording to the specific
task.

In the following sections, we will first describe the physigical background
of neuronal excitability and synaptic transmission, arehtintroduce the general
model structure along with examples of how the model eqnat@an be adjusted
according to different tasks. These include the elucidatissingle neuron dynam-
ics and impulse pattern generation [8, 16, 45], examinatfareuronal synchroniza-
tion [49, 46] and noise effects [18, 17, 44, 26], and the phlggjically appropriate
implementation of synapses, specifically designed for nggharmacological and
clinical research [45]. Finally, the diverse approachdkhei combined in a study of
synaptic plasticity in hypothalamic control of sleep-wakeles with accompanying
alterations in thalamic synchronization states [47, 48].

5.2.1 Physiological Background: Basic Membrane Propesdie

The most relevant structure of information processing erlrvous system is the
neuronal membrane and more precisely, the functional proteat are embedded
therein. This is where action potentials, i.e. the majoriees of information to other
neurons, are generated, and where the information fronr o#ks is received.
Figure 5.2 illustrates the electrically relevant compadseihere are ion pumps
and ion exchangers (1) to maintain the functionally impatrtasoncentration differ-
ences and to compensate for passive ions fluxes through esithivef leaky ion
channels (2). The multitude of voltage-gated ion chanr®Iss(represented by two
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major types: one having a single gate for channel activatimha second one with an
additional gate for inactivation. Typical examples areRlogassium (K) and Sodium
(Na) channels for action potential generation.
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Fig. 5.2 Physiologically relevant processes determining neurereitability and synaptic trans-
mission (adapted from [45]). See text for further descoipti

Transmitter-gated ion channels (4) are combined with aibgndite (receptor)
for the synaptic transmitter. The receptor can be an intggnd of the channel pro-
tein directly interfering with its activation state (ditegating). This is the ionotropic
type of synaptic transmission. Other receptors are renmote the ion channels, and
are co-localized with G-proteins, which initiate intrdoédr second messenger cas-
cades to control or modulate the ion channels’ state (iotigating, metabotropic
type of transmission). The neurotransmitters are rele&re@d presynaptic vesicles
(6) into the synaptic cleft. This process is typically iated by the arrival of an ac-
tion potential leading to opening of voltage-dependentBannels. The transmitter
can control its own release via autoreceptors (7). It canlibgéreated via diffusion
or degradation and is often actively re-uptaken into theymaptic terminal. A sim-
pler, electrical, synapse is made up by gap-junctions betweighboring cells (5).

A diversity of neuromodulators and hormones, indicated bgtfhg molecules,
intereferes with the membrane processes and/or modulates expression. Drug
application is symbolized by a pipette (9). All membraneteirts are subjected to
dynamic control of internalization and degradation or &gsis and embedding. The
following discussion specifically addresses generatiampfilses by voltage-gated
ion channels and their synaptic control, including acfidependent modulation
and drug effects.
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5.2.2 Modeling Functional Membrane Properties

The principal concept of conductance-based models wadapmebin the mid-20th
century. It was particularly promoted by the work of Hodgkimd Huxley [23], who
combined experimental and modeling techniques to exdt@appearance of action
potentials by voltage- and time-dependent alterationsmticonductances. Let us
start with a short overview of the general idea of a condusamased approach.

Na*.
o

e ??iim‘gf
Fig. 5.3 A conductance- L
based approach. A: The neu-
ronal membrane with voltage-
and transmitter-gated ion
channels. From left to right:
leak channel, voltage-gated e I 1w LTINB
potassium and sodium chan- p: s
nels, and transmitter-gated v c== %° O V3 e
channel. B: electrical equiva- v L Ve Vil
lent circuit corresponding to L
the membrane and ion chan- intracelllar i
nels in A. Adapted from Fig.2 c% =->I where j=LK,Nasyn, .
in [45]

extracellular

Figure 5.3A presents the dynamically most relevant men#structures to-
gether with their electrical equivalents in Fig. 5.3B. Thembrane separates in-
tracellular and extracellular fluids with different ion ammntrations which are kept
constant by ion pumps (not shown). Electrically, the lipildyer can be assumed to
be impermeable for ions but it constitutes a capactaf significant value (about
1uF /cn?). AlterationsdV /dt of the membrane potential over time are determined
by the sum of ion currentsy(l) that are charging the membrane capacitafice

dv
Cqr =2 (5.1)

The ion currentsl( depend on the voltag&/{ that drives the ions through the
membrane and the electrical resistanBg \hich, in physiology, is given by its
inverse value, i.e. the electrical conductance, symbohzi¢h a lower case letter:

|l=—=q-V 5.2
==0 (5.2)
This equation is best known as Ohm’s law. However, in the cdsgeuronal
membranes, specific features have to be considered regdrdih the conductance
and the effective voltage. Physiologically, the actualduimiancegy of specific ion
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channels depend on the conductances of single charmelsye) and the number
of open channelsy open):

Ox = Nx,open’ x single (5.3)

However, the number of open ion channels cannot be measuieetlyl It can be
estimated from the whole cell currents, if single channebrdings are also being
made. Hence, the relevant value, experimentally and inlsithons, is the whole
cell conductance, conventionally given in relation to a maxm conductancegy max
with a scaling factogy, reflecting the portion of opened channels:

Accordingly, equivalent circuits as in Fig. 5.3B do not cigies single channels
but compound ion currents with all channels of a specific tyg@esented by a
single conductance. While the leak conductance can be assoomstant for most
situations, those of voltage- and transmitter-gated cbisnran change and, there-
fore, are symbolized with sliders.

The equivalent circuit in Fig. 5.3B also contains batteridsch do not have
direct counterpartsin the membrane in Fig. 5.3A. Thesekat account for the fact
that the voltage driving the ions through the channels isgotal to the membrane
potential. Different from technical systems, the refeeeralue for zero current is
not the ground potential of 0 mV. Each type of ions has its owteptial at which
the current is zero. Its value depends on the ion conceot&inside and outside
the cell. Due to these concentration differences a chergiealient drives the ions
in the direction of lower concentration, where they prodaneslectrical field in the
opposite direction. The ion flow is zero when the electricad ahemical forces are
equal and of opposite direction:

z-F-Vin/out:—R-T-In(C'”t), (5.5)
u

whereVi, oyt is the membrane potential measured from the inside to thedsut
of the cell,Cj, andCyy; are the respective ion concentratiofisjs the absolute
temperatureR is the gas constank, is Faraday’s constant, arzds the valence of
the ion. Solving equation (5.5) fof, the equilibrium potentiaVy = Vi, oy for any
type of ionx can be calculated:

T Cout
VX_R-ZF-In(Cin) (5.6)

This equation, derived by Walter Nernst already in 1888nisvin as the Nernst
equation and the equilibrium potentials are called Neratitials. These potentials
appear in Fig. 5.3B as batteries.

Physiology introduces many complications, including #hdae to unspecific ion
channels. In this case, the voltage of zero current depemttsecequilibrium poten-
tials of all the ions that can pass. Electrically, this carcbasidered as a parallel
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circuit with different equilibrium potentials (batterieand conductances. The com-
mon equilibrium potential, i.e. the potential of zero netrent flow, is given by

_Oa-Vatoe Vet e Viat ..
Ox1+Ox2+0x3+ -

wherex refers to a specific type of ion channel, whité,x2,x3, ... represent
different ions that can pass with conductaggeand are driven by equilibrium po-
tentialsVyi. In this general form, the potenti, is called “reversal”, according to
observations in electrophysiological experiments thatinection of the ion current
is reversed at this point. Note that while the equilibriuntquaial refers to specific
ions and concentration differences, the reversal potiestieracterizes ion channels.

The reversal potential sets the reference value of zero Vb# effective voltage
which is driving the ions through a given type of channelg, sh-called “driving
force” is given by the distance of the actual membrane pa@kvitto the reversal
potentialMy. Ohm'’s law, adjusted to ion currents, then has the form

Vi , (5.7)

Ix=ax-Ox- (V—V) (5.8)

For experimental reasons potentials and currents are otionally given in
inside-out direction. In experiments the reference, omugd electrode is placed
in the medium outside the cell while the recording electrisdaserted.

5.2.3 Model Implementation: Simplifications and Extensisn

Figure 5.3 illustrates the principle structure of a condnce-based model. In this
form it already includes several simplifications. First df @n concentrations do
not explicitly appear, but only the reversal potentialsgiven. Furthermore, differ-
ent ion channels with their conductances and reversal patemay be combined
in one channel type. This is usually the case for the leakmélarwhich all are rep-
resented by a single term. If required, the specific typesaf thannels or changes
of ion concentrations can be included using Eq. (5.7) aloitly the Eq.(5.6).
Among the most fundamental structures in living systemsaatie ion pumps
which are required to maintain concentration differentésertheless, such pump
currents hardly appear in neuronal simulations. Occadligraa electrogenic com-
ponent, e.g. of the Na-K pump, is introduced to simulate pimhijbition by cooling
or pharmacological substances like heart glycosides Hajvever, if required, the
conductance-based approach allows taking into accowgratitins of ion concen-
trations due to a possible imbalance of active pump andyealkesk currents. It also
can consider that the activity of ion pumps, vice versa, ddpen the ion concentra-
tions. In the simplest form, this can be introduced by antaithl current term that
does not depend on the membrane potential or transmitténtan imbalance be-
tween inward and outward currents. There are no limits tdeémgnt such interde-
pendences in greater detail, for example, with explicitn®for ion concentrations
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according to the Nernst equation and depending on morefgppamp currents.
Altogether, although the model structure is simplified iit seflects physiological
processes and allows implementing them in more detail wesmequested.

5.3 Neuronal Excitability

The interesting neuronal dynamics arise from ion chanrels ¢hange their acti-
vation state depending on the membrane potential, synaptismitters, or other
signal substances. Most importantly, neurons can genscatalled action poten-
tials (APs). APs are transient changes of the membrane fialtegoing from a rest-

ing potential, which is near the K-equilibrium, towards tie-equilibrium potential

and back. These types of cells are called “excitable”. Inroes, the APs are fast,
spike-like, deflections of the membrane potential.

The mechanisms of neuronal excitability can be looked at fdferent points of
view. In physiological terms we would say that excitabiligguires “regenerative”
or “self-amplifying” processes. From an engineering pecijpe it can be said that
a positive feedback loop is involved. In terms of dynamideys theory we would
say that in response to small disturbance excitable sysséims a large deviation
from a stable state, which corresponds to a single AP. Detipit difference in ter-
minology all these descriptions of neuronal excitabiléyar to the same biological
phenomenon: the voltage- and time-dependent alteratitnsic conductances.

5.3.1 Voltage-Gated Currents and Action Potentials

In neurons, the regenerative process is constituted byioge voltage-dependent
Na channels in response to depolarization which leads tbdudepolarization with
further opening of Na channels. This would continue unglia equilibrium poten-
tial is reached, if it were not for the opposing effects thatactivated almost simul-
taneously. Firstly, the regenerative process is selftingibecause the Na channels
go back to a closed state soon after opening; i.e., they beowautivated. Secondly,
with some delay, a negative feedback loop of voltage-degetid channels is acti-
vated driving the membrane potential down towards the Kldaiwim potential.

The functional properties of the two major types of ion chelathat are respon-
sible for the generation of AP are illustrated in Fig. 5.4dtger with the voltage-
and time-dependences of their opening and closing. The Kraaon the left of
Fig. 5.4A represents the simplest type with only one gatee{ldn) which opens
on depolarization and closes on repolarisation. The Narolaiso possesses such
a gate (n), but, there is also a second, the so-called inactivatite @& which does
just the opposite. It closes on depolarization and opengpalarisation - luckily
with some time delay; otherwise the channel would never lEop
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Fig. 5.4 Dynamics of different types of voltage-gated ion channg&ldon channels with one and
two gates according to the voltage-dependéhtandNa’ channels for action potential generation.
B: Opening and closing & andNa" channels in response to a voltage step fror® to—10 mV
(duration indicated by bars at the time axis). The uppeesatemonstrate single channel currents
on repeated stimulation, and the lower traces show the cangpourrent summed up over 200
recordings. Diagrams and data are from the “cLabs-Neureathing software (www.cLabs.de).

The effects of depolarization on single channel currergsshown in Fig. 5.4B.
The upper diagrams show the effects of repeated applicafioepolarizing volt-
age steps and illustrate that opening and closing of ionreblarare stochastic pro-
cesses. The single-gate K channel switches randomly betogened and closed
states. The double-gated Na channel also opens with raneétay dnd duration.
However, this happens only once in response to a depolgrizitential step be-
cause the inactivation gate closes, and will only be opegathafter repolarisation
with significant time-delay of several milliseconds. Thasethe ionic mechanisms
of the refractory period. No Na current will flow as long as thgate is closed even
when a depolarizing stimulus opens theate.
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Fig. 5.5 lon currents and neuronal excitability. A: Virtual voltaglamp experiments with a model
of neuronal excitability. Upper traces demonstrate vatateps that are applied to the neuron,
and lower traces show the resulting ionic currents. LefanBition from initial Na inward current
(downward deflection) to a K outward current in response toltage step from -70 to -10 mV.
Middle and right diagrams: recordings of isolated K and Neents when the other current is
blocked by TTX or TEA, respectively. Different voltage sselpave been applied, as shown in the
upper trace. B: Current-voltag&/() curves of K™ and Na channels obtained from recordings in
the middle and right diagrams in A. LinedY -relations of constant maximum conductances are
indicated by dashed lines and the reversal potentials loyvarrThe recordings have been made in
the virtual “Voltage- and Current-Clamp Lab” of “cLabs-Neun” (www.cLabs.de).

Summing up, such single-channel currents generated depéated stimulation
(Fig. 5.4B, lower diagrams) gives the same curves as woutibtsned with whole-
cell current recordings to which a manifold of single chdsmentribute simultane-
ously (Fig. 5.5A). Such whole-cell experiments need to bheedo the voltage/patch-
clamp mode. The left diagram shows the overlapping of theldastransient Na
inward with a sustained K outward current in response to glsinoltage step. The
mid and right diagrams show recordings of isolated K- andcNaents, respec-
tively, in response to a family of voltage steps from theirgstnembrane potential
to different “command” potentials - a typical experimergedcedure.
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From the maximum currents of such recordings, currentagat(\VV) curves can
be drawn (Fig. 5.5B). These curves have a linear range witistemt conductance
(dashed lines) which is achieved when all channels are ofenslope gives the
maximum conductanag= | /V. Deviations from these curves mean that not all ion
channels are opened. The relation between the actual tamdrthe one expected
at maximum conductance is used to calculate the voltagerdimt activation state:

_ V) alv)
aV(V) N |max(V) B Omax

(5.9)

Typically, the values can be fitted by the Boltzmann functiefiecting a proba-
bilistic distribution of voltage-dependent opening ofividual channels with high-
est transition probabilities around the half-activatianentialV:

1
T Irexpg—s (V—Wh)

The parametes is the slope at the half activation potential which deteesin
the broadness of the activation range. The functionallyartgnt time delays can
be determined from the time course of the current curves aarsiin Fig. 5.5A.
Mostly, the curves can be fitted quite well by a single expdiaéfunction with
time constant and can be modeled by means of first order differential eqoati

av(V) (5.10)

da ayv—a
dt 1
Equations (5.10) and (5.11), accounting for voltage ancktdependences of
ion channels’ activation, together with the membrane andeot equations (5.1)
and (5.8) provide a general and complete set of equationthéodevelopment of
conductance-based models of neuronal excitability andry
The complete set of equations used to obtain the data in Fga 5.5 is shown
in Fig. 5.6. The membrane equation includes, apart fromehk turrent with con-
stant conductance, the Na and K currents for AP generatitnweltage- and time-
dependent conductances. lon currents are given by the groflaonductance and
driving force. Voltage- and time-dependences of ionic aatdnces are addressed
by activation and inactivation variables (see Fig. 5.4). AB generation it needs
to shift the membrane potential into a voltage range whernefficent number of
Na channels can be opened in order to trigger the regeneatdcess of depolar-
ization and Na channels activation. All subsequent dynaiaiie determined by the
activation and inactivation processes of the ion channetsved.

(5.11)

5.3.2 Simplifications of the Original Hodgkin-Huxley Equatns

The model equations in Fig. 5.6 are significantly simplifiechpared to the original
Hodgkin-Huxley approach [23] that still provides the basismost conductance-
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Simplified Hodgkin-Huxley Neuron

N
lon currents:

qv L = g(V-V)
Cu E =—=I|—Ino— Ik Ina = gnamnahne(V — Via)
Ik = yknl\'(V*VA')

A Membrane equation:

N\ AN

Voltage dependences: \( Time dependences: )

myay = 1/(1+exp(=smna(V = Vina)) [|dmya/dt = (myay — mya)/Tmna
hyay = 1/(1+exp(=suna(V = Vi,na))) dhya/dt = (hnay — hna)/ThNa

L v = YA texp=sax(V-Vox)) J{ dnx/dt = (nxy —nk)/mx
B 1 1
hyay h
nxvi—f——t——— Il A e
. ng
L e S S T
MNa,y
0 - 0
-80 -40 0 [mv] 40 0 1 2 . 3 4 5 [ms]
voltage time

Fig. 5.6 A simplified conductance-based model of Hodgkin-Huxleyetyp: the complete set
of equations. B: steady-state voltage dependences (ledtfime dependences (right) of current
activation and inactivation.

based models, not only for neurons but also for other exigtablls as those of
the heart. To demonstrate the differences between thenatighd our simplified
approach we refer to an example in Chapter 12 in this bookdbstribes the mod-
eling of cardiac cells. This model is based on the ingeniooskwf Denis Noble
[40] who has adapted the Hodgkin-Huxley (HH) model of nemx@tation for sim-
ulation of the pacemaker activity of the heart cells.

The core of all conductance-based models is the membraragiequLikewise,
the diverse ion currents are always calculated as the ptadubeir driving force
and ionic conductance. The relevant dynamics are intratlbgethe voltage and
time dependences of the conductances, and exactly thefegreints in which the
implementations can significantly differ. To illustratetimost important differences
between the original and the simplified approach, we comba&realculation of the
variablemfor Na activation in Fig. 5.7.

In the original HH-equations, all activation variables aetermined by expo-
nential rate constants, andfy, such as those in equations A1 and A2 of Fig. 5.7,
also plotted in insert 1 with numerical values from Surokyz (this book). The
steady-state voltage-dependencigs(A3) as well as the activation time constants
T (A4) are determined to calculate the activation variaibl€A5). The exponen-
tial rate constants lead to a sigmoid steady state activatiovem, which appears
in the current equation as activation variabgA6) with the power of 3, thereby
adjusted to an appropriate voltage range.
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Na-channel activation (m) Insert |:Steady-state voltage dependences

According to the original
Hodgkin-Huxley equations:

|. Rate equations:

100(—V — 48)

m = e Al
Ry (s - S U
g, = JA0(V+8) ) N |™v sigmoid
exp((V +8)/5) — 1 0 P Ns=1.2{ Vi=15mV 0
4 40 40
2. Steady-state activation: % 0 Vmv)
O . A3 B Simplified version:
V' am + B *3) , 1
my=-———/ "— >~ (B1)
1 —s(V -
3.Time delay of activation: +exp(~s( Vi)
,e 1 - dm' _ my —m' B2
~ o +n & dt v ®2)
4. Activation kinetics: Ina=m' -} gna(V — V:\'a) (B3)
dm _ my—-m
T ! (A5) 7
T | Imslion
A3/4 combined: -80 V(mV] 0 0 0
dm 20 |
— = am(l — m)+ Bmm A5a | o Insert 2:
di n Yot e b m( Time-dependent
v | i 1 t activation
5. Current equation: (=)} ienishin (ms)
Ing=m*h-gna(V = Via) (A6) 20— T e o2
02 tmefms 08

Fig. 5.7 Simplification of the original Hodgkin-Huxley model, denstrated by means of thHéa
current activation variablen. A: Equations according to the original Hodgkin-Huxley egrech.
B: the simplified equations. Inserts 1 and 2 compare voltagetine dependences of the original
and simplified model (see text).

Almost identical activation curves can be achieved witmgle sigmoid function
m{, (B1), as shown in insert 1 of Fig. 5.7 (curve fof, coincides with that font).
Such form of steady state activation is more appropriaténigpplementation ofr/
in the current equation (B3) without the need for a power fiomc The voltage
dependence of the time constamtlikewise introduced by the rate constants, is
plotted in insert 2 of Fig. 5.7. Althoughtransiently goes up near the middle of the
voltage range (upper trace), the differences in the timersmofm compared tan
with a constant time delay are discernible when plotted over a voltage step that
approximately covers the range of an action potential.

The activation variablen is often calculated directly from the time constants,
here shown in a form used in Chapter 12. Equations A3 and Adchwihere are
shown specifically to indicate the physiologically releiaoltage and time depen-
dences, can therefore be skipped. However, the number atieqs is not really the
problem. Major difficulties for the understanding and athusnt of the dynamics in
relation to physiological processes are introduced by #te constants and power
function. What can easily be done with sigmoid activatiomdions, e.g. accounting
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for a shift of the activation range with appropriate adjustrnof the half activation
voltageVy, is much more difficult to implement in the rate equations.

In order to understand the reasons for the implementatioatefconstants one
should remember the situation in the mid-20th century, aspkeially the chal-
lenge that Hodgkin, Huxley, Noble and others have undeniakée idea to ex-
plain the observed dynamics by specific rate transitiongppsared already at that
time. Remarkably, all the principle assumptions have beewgn to be correct. The
ion channel gates, detected in experiments only 25 yeas Hiill are denoted by
the lettersm, n, andh that Hodgkin and Huxley have introduced. These studies of
Hodgkin and Huxley described in their 1952 papers can beidered the most ex-
ceptional work in neurophysiology and biophysics in theh2€ntury. It was done
in a combination of electrophysiological experiments aoohputer modeling stud-
ies.

In actual neurophysiology, the focus is not primarily laidthe shape of an AP,
although it can still be of interest in case of heart cellheédwise, APs are mostly
considered in context with the modulation of neuronal firiatgs and patterns. Such
effects are introduced via the alterations of ionic condnces which are easier to
handle with the simplified description. The applied vareband parameters can
directly be related to experimental data. From this pointief, the above described
simplifications may be considered as adjustments to exeatahreality.

A Two-Dimensional Conductance-Based Model of Spike Gaoera

Real simplifications, including dimension reduction, ampiemented with the next
steps that eliminate three equations of the already siraglifiodel, two of which
are differential (Fig. 5.8). This is achieved by considgractivation of Na channels
as instantaneous, i.e. without time delays, and negleblanghannel inactivation.

Neglecting the time delays of Na channel activation is fiegtibecause these
channels open much faster than any others. Inactivationao€innels needs to
be considered in specific simulations as, for example, gekelamp experiments,
where it determines the typical time-course of the Na currenthe unclamped,
free-running mode of action potentials generation Na cenwill anyhow close
in the course of K-induced repolarisation. Hence, as lonthase is no need to
examine some specific phenomena, e.g. in context with actefsaperiod, the two
dimensional model of action potential generation can be atso for extensions in
other directions, as described in section 5.5.

A Mathematical Approach: the Two-Dimensional FitzHughgNiao Model

The complicated structure of the original HH equations iithr dimensions has
challenged many scientists, mostly biophysicists andH#otsts, to develop a di-
mension reduced version of neuronal excitability, esplgciar explicit analytical

examination and easier visualization of the state spacardigs. The most widely
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Simplified Hodgkin-Huxley model... ..reduced to two dimensions
Membrane equation: ( B
av av
C‘”E ==5 Iy, - Ig CAIE =—=I — Iy, — Ig
lon currents:
L = g(V-V) I = g(V-V)

1;\‘11 = g.\"am‘\"aMV - V}\'a) INa = g.\'aa.\'a(v = ‘/Na)

Ix = gknk(V —Vk) Ix = gkax(V - Vk)
Voltage dependences:

a;\"a.\’ = 1/(1 + exp(_s.‘\'a(v - V;l.:\'a)))
aky = 1/(1+exp(—sk(V —Vik)))

myay = 1/(1+4exp(=8mna(V = Vin,na)))

nky = 1/(1+exp(=sux(V — Viuk)))

Time dependences:

daK/dt = (G.K.v - O,K)/TK

Fig. 5.8 Reduction of an already simplified four-dimensional Hoagkiuxley type model (left)
to a two- dimensional version (right). Inactivation Ni-currents f) is neglected, which makes
the calculation of its voltage- and time-dependences disgdgle. Consideringla activation as
instantaneous eliminates a second differential equafiea.text for detail.

used model, which has become a prototype of an excitableonalsystem, was
developed by FitzHugh in 1961. This is a two-dimensionateysfollowing the
equations shown below (see also Postnov et al., this book).

rv%’:v—a.vf*—b-ww (5.12)
dw
rw-azv—c-w (5.13)

All dynamics are directly related to the main variamMevhich represents the
membrane voltage. Excitation is introduced by a positieslfeack from the voltage
itself (v), counteracted by a negative feedback loop due-t ¢®) and a “recovery”
variable (v) which is activated by the voltag&)(with a slower time constant),
including a relaxation ternc( w). A perturbation introduced by the terhtan give
rise to a spike-like deflection, and a series of spikes camtieced with a firing
rate dependent on the strength oMoreover, some typical phenomena of neuronal
excitability can be observed, e.g. “depolarization blook*accommodation”.

Dimension reduction from a system theoretical point of vikke the FitzHugh-
Nagumo and similar models, can be advantageous for systeatgse but intro-
duces serious limitations when experimentally and clithjoelevant mechanisms
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need to be examined. For example, electrophysiologicamxents are often per-

formed under application of specific ion channel's agorastd antagonists. Also

pharmacological treatments of neurological and psydbidisorders are often in-

terfering with ionic conductances. Under these conditicoaductance-based mod-
els have clear advantages. They also can be simplified andeddn dimensions as
shown above. Moreover, if required, physiologically agprate extensions can be
made as we show below.

5.4 lon Channels and Impulse Patterns

An enormous variety of ion channels can be involved in ther@bof neuronal ex-
citability. Often, specific functions of a cell are closeslated to the expression of
specific types of ion channels. In the following we give anregke of the develop-
ment of a single neuron pattern generator which elucidatesesting characteris-
tics that may be of functional relevance for several aspafateuronal information
processing, e.g. sensory information transmission andomalisynchronization.

The model was originally developed for the simulation ofipleeral cold recep-
tor discharges [7]. Cold receptors show the greatest yeofeimpulse patterns that
have been observed in recordings from individual neurohsTbese include dif-
ferent types of single spike-discharges (tonic firing), inge groups (bursts), and
chaotic pattern [6]. These impulse patterns seem to arisa the interaction be-
tween spike generation and subthreshold membrane pdtestidlations [8]. Such
mechanisms and patterns can not be simulated with a twordgiimreal conductance-
based model, but requires model extensions.

As experiments suggested the existence of subthreshoithtisns operating
independently from spike-generation [5, 54], we have exéekthe two-dimensional
model in Fig. 5.8 by two slow, subthreshold currehtsandl;s:

dv
C'EZZIM:|I+Id+Ir+IdS+IrS (5.14)

To underline that this is a generic approach we denote athgel dependent
currents in terms of depolarizingl and repolarisingr(), with the additional suffix
(s) for the slow, subthreshold currents. “Subthreshold” nsgthat these currents are
activated below the “threshold” of spike generation, whilew” refers to the fact
that these currents are activated much slower than the-ggikerating currents.

We have implemented and used this model in different wayiss Bimplest form
it is entirely composed of voltage-dependent currents i@icg to the equations in
Fig. 5.7B. For slow subthreshold currents the range of geltdependent activation
is shifted to more negative potentials (subthreshold) bey are activating with sig-
nificantly larger time constants (slow). Such model simregahe encoding proper-
ties of shark electroreceptors and accounts for neuronataiyl properties of brain
cells [24]. For the simulation of cold receptor dischargeshad to consider the out-
comes of electrophysiological experiments with Ca-chlblwekers and changed
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Ca-concentrations which indicated significant contribatof Ca-dependent K con-
ductances to impulse pattern generation [55].

Such mechanisms have originally been implemented in adlildeith voltage-
dependent Ca-currents, alterations of intracellular Geceatration, and the thereby
activated K currents [25]. Later, significant simplificattohave been introduced.
Activation ag; of the slow repolarising K current has been directly coneetb the
slow depolarizing curreritq with a coupling factor, time constants,, andk as a
scaling factor of the relaxation term

dagr N -lsg—K-asr
dt Tor
Temperature dependences have been implemented, accoodéxgerimental
data, with scaling factors 3.0 and 1.3 pefQ@or all activation time constants and
maximum conductances, respectively (see [7, 8] for degmitsparameter values).
Additionally, noise has been introduced because a spegffe of patterns can-
not be explained without stochastic components [9, 7, 8].Hake implemented
conventional Gaussian white noise in different ways: asetiirand as conductance
noise. The most widely used implementation is additiveenirnoise:

(5.15)

dv
C'EZZW'HNoise (5.16)

Such current noise is assumed to comprise all kinds of raridéioences, irre-
spective of their origin. It is an appropriate implemerdgatof synaptic noise and
may also reflect environmental fluctuations, e.g., of dé#féemeuromodulatory sub-
stances. As major noise effects, especially in isolatedares) may arise from the
stochastic opening and closing of ion channels, we haveiatsmduced conduc-
tance noise by adding the noise term to the ion channel &ctivkinetics

LN (5.17)

or, with most dramatic effects, to the Ca-dynamics (aceaydd equation (5.15))

% _ N-lsg—K-agr
dt Tor
The outcomes of the model are shown in Fig. 5.9A by plots efrsgike intervals
(ISI), which are the time intervals between successiveespikigure 5.9B shows
examples of voltage traces (for details see [18, 44]). Therdenistic bifurcation
structure in the upper diagram of Fig. 5.9A demonstratessit@ns from tonic-
firing via chaos to burst discharges and again to tonic fiingioisy simulations,
shown in lower diagrams, these transitions are smeared\bhtgh temperatures a
particular type of pattern appears which does not exist terd@nistic simulations.
This has been analyzed in detail and is comparably easy terstashd [9, 24, 16,
17].
Here, we specifically emphasize the noise effects in thedbsveperature range
where deterministic simulations exhibit a pacemaker-tikeic firing. Especially

+ ANoise (5.18)
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Fig. 5.9 Impulse patterns and
effects of current and con-
ductance noise in a model
neuron with subthreshold os-
cillations. A: Bifurcation dia-
grams of interspike-intervals
(ISl) obtained by temperature
tuning for the deterministic
case (upper diagram), with
current noise (mid-diagram),
and conductance noise (lower
diagram). B: Examples of
voltage traces and impulse
patterns at 5 and 2%5C of

the simulations in A. The
values of D give the intensity
of Gaussian white noise. The
data were presented in an
other form in [18, 44]
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with application of conductance noise the bursting agtiséems to continue far into
the deterministically tonic firing regime, but with a moreeigular pattern. Examples
of voltage traces in Fig. 5.9B additionally underline thaseoeffects in the tonic
firing regime (5C) in comparison with bursting (2&) where current as well as
conductance noise mainly introduce some randomness insapgeneration.
These simulation data suggest that the transitions frorarpaker-like tonic fir-

ing to burst discharges via period doubling bifurcatiorjiding a broad range of
chaos, are endowed with particularly complex dynamics.séhgarticular dynam-
ics, although not yet fully understood, seem to have sigaitiempact on neuronal
synchronization as we illustrate in the next section.
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5.5 Gap Junction Coupling and Neuronal Synchronization

Alterations of impulse patterns can be observed not onlgaordings from periph-
eral sensory receptors but also in many neurons in the dertnaous system (CNS).
Especially the transitions from tonic firing to burst disges were shown to play
a major role in diverse functions, mostly in context with real synchronization.
The best known example is synchronization of thalamic amtioed neurons at the
transition from wakefulness to sleep which goes along wiirations of neuronal
impulse pattern from tonic firing to bursting [32, 35]. Sianiinterdependences have
been suggested to underlie information binding in the Jisaeex where synchro-
nization even among distant neurons was observed in plaxgtifiethe occurrence of
burst discharges [57]. Synchronized neuronal dischargPsikinson’s disease and
epilepsy also seem to be associated with transitions tdibgisehavior [29, 38]. It
is still not clear whether burst activity appears due to neat synchronization or
neuronal synchronization is a consequence of tonic to ingrstansitions.

In order to study synchronization properties at tonic-bogstransition we have
used a basic approach of only two neurons connected viagegigns (electrotonic
or diffusive coupling, for details see [49, 46]). Instead@hperature scaling as in
Fig. 5.9 we have used an external current as control paramviieh may reflect a
compound synaptic input and leads to similar bifurcatidasgomparison see Fig. 4
in [44]). Fig. 5.10B shows the transitions from pacemakiez-tonic firing via chaos
to bursting that apparently are of particular interest feauronal synchronization.

Fig. 5.10 Synchronization

properties of the gap-junction A
coupled model neurons. A:
Minimal coupling strength
Qgap required for in-phase
synchronization of identical
neurons with impulse pattern
according to B. Bifurcation
diagram of interspike intervals
(ISI) obtained by external ) ;
current injectior ey:. el Aem”]

B

Josp [ Som’]

0.00)

[vs]

181 [s]

Gap-junction coupling means that individual neurons rezaidditional currents
Igap from their neighboring neurons which depend on the actuamial difference
(Vi —Vj) and the conductance of the gap-junctiggs,.

lgapi = 9gap- (Vi —Vj) with i,j=1,2 (incase of only two neurons) (5.19)

In deterministic simulations, when the two model neuronsrafe in identical
periodic states, they are expected to synchronize evenexttemely low coupling
strengths, irrespective of their initial conditions. Irdigethis is the case in the burst-
ing regime but, surprisingly, not in the likewise periodinic-firing regime. There,
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as shown in Fig. 5.10A, the coupling strengths which are edddr in-phase syn-
chronization are even higher than in most ranges of the aheegfime.

In addition to the above described noise effects, thesehsgnization data pro-
vide further indications that this kind of tonic-firing agty is governed by more
complex dynamics than could be expected from a simple paoemauron. Indeed,
this tonic activity would not exist without the subthrestholrrents, even though the
oscillations can no longer be recognized [8]. We will rettorthe issue in context
with a model of hypothalamic control of thalamic synchraiian along sleep-wake
cycles. This model also includes chemical synapses whdescribed next.

5.6 Chemical Synapses - the Main Targets of Drugs

The most relevant contacts for specific information trarssioin, especially over
long distances and for communication among brain areagpage via chemical
synapses. In contrast to the electrical synapses, infasmtaiansmission via chem-
ical synapses is unidirectional. The type of informatioansmission transiently
changes from electrical to chemical. The electrical atstivi the presynaptic termi-
nal, mostly in form of action potentials, induces the reéeaschemical transmitters
(also called neurotransmitters) which are modulating tleetgcal activity of the
postsynaptic neuron. This process goes through a numbaps, providing targets
for other chemicals, especially drugs. Likewise, manyrbdisorders are likely to
originate from disturbances of chemical information trainssion.

Multiple neurotransmitters are present in the brain. Softkem are ubiquitous,
like glutamate or gamma-amino-butyric-acid (GABA) whicte ahe major exci-
tatory and inhibitory transmitters. Others, like serotgrare released by specific,
often small brain nuclei, but are involved in the control ahaltitude of functions.
The cause of neurological and psychiatric diseases is afismmed in an imbalance
of diverse transmitter systems, and is modeled accordig@ly42]. Most drugs for
the treatment of these disorders also interfere with syo#ginsmission.

Together with these classical neurotransmitters neurdtes aelease the so-
called co-transmitters, which typically are neuropepidBuring recent years a
great number of such co-transmitters have been identifiedl jtacan be expected
that many more will follow. Action of such co-transmittess uisually not easy to
detect in electrophysiological experiments, because thestly exert neuromodu-
latory effects and, compared to classical transmittersiaténduce strong potential
deflections. Nevertheless, these co-released neuropstid involved in a multi-
tude of physiological actions and are becoming increagipgpular for drug devel-
opment. Activity and effects of such a neuropeptide, i.exor which is required
for sustained wakefulness, will be considered in more tetaiection 5.8.
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5.6.1 A Conductance-Based Model of Synaptic Transmission

In the following a modeling approach is described that dagsaim to simulate

a specific synapse but should reflect general mechanismsiapty transmission.
We particularly emphasize the model structure that alloasyeadjustments and
extensions if specific functions or mechanisms need to bmee in detail.

presynaptic spike Transmitter release
A vV, AR R V,: spike threshold
== _Z L., - presynaptic inhibition of ,,

dt

[l : il Copike~ amount of transmitter release
- activation of autoreceptors
- transmitter availability

Transmitter release

B |c esse = Cpite | - presynaptic plasticity
release
1+exp(-s,, V.-V,
XP(=8 3 Ve = V) Transmitter concentration
1 l Tolim- transmitter elimination
transmitter concentration - transmitter degradation
c dCi  Coipuse  Cilet \ - re-uptake inhibitors
t - T T .
a
di ccum elim Postsynaptic receptors
! 1 Tpos Tumber of available receptors
receptors activation P - Teceptor agomists )
VosiCoicp @ - non-competitive antagonists
D p.= _post et o - up-/down-regulation
¢ + Cetent c,: postsynaptic receptor activation
J 1 - competitive antagonists
current activation . Second Messenger Systems
E ﬂ _pP _ 4 _L& T, current activation
At Toy  Tinaa Tiaces CUrTent inactivation
1 J - delays in second
postsynaptic current messenger system
F ]Mt =g.a, (V post V,) ¢ D " Postsynaptic currents and potentials
’ &,  maximum conductance
I} 1 - channel blockers
postsynaptic potential - posisynaptic plasticity
av . m V,:  reversal potential
G C ot _ _Z I .y ¢ - ion concentrations
dt post,  * post,

Fig. 5.11 The conductance-based model of synaptic transmissioratieqs are given in the left
box, together with illustrations of the variables time-ts®1 Main control parameters and their
physiological/pharmacological functions are indicatedhie box on the right (modified and ex-
tended from Fig. 4 in [45].

Figure 5.11 illustrates the different steps of synaptiasraission and their im-
plementation in the model (for details see [45]). The seqa&i synaptic transmis-
sion starts with the presynaptic spike (Fig. 5.11A). Redeafsa neurotransmitter
is initiated via the activation of voltage-dependent Cancteds in the membrane
of the presynaptic terminal. The increasing concentradibcalcium in the termi-
nal activates a sequence of events that leads to the fusimansimitter-containing
vesicles with the presynaptic membrane and subsequeatestd transmitter into
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the cleft. These mechanisms are not implemented in detad .steep sigmoid acti-
vation function, which is shown with dashed line in Fig. 5A11imits the time of
transmitter release to the duration of the presynaptioagibtential. It is calculated
according to equation given in Fig. 5.11B fagn = 1, 4 = —30mV. The amount
of transmitter being released is adjusted by the scalingfagixe

The time delays of transmitter release, including accutiariand elimination of
calcium in the presynaptic terminal, as well as vesiclednsare very short. There-
fore, they can be comprised in the time delays of transmétteumulation €accum
and elimination {eim) in equation in Fig. 5.11C, which calculates the time course
of transmitter concentration in the cleft. Transmitten@hation is implemented in
form of a first order relaxation. This process is the slowds¢mwthe transmitters are
eliminated only by passive diffusion, but can be accelerbteactive processes like
degradation and/or reuptake of the transmitter to the prastjc terminal.

Activation of postsynaptic receptops depends on the transmitter concentration
in the cleft and on the availability of the receptors on thetpgnaptic membrane.
This can be modeled in a form of Michaelis-Menten kinetigsslaown in the inset
in Fig. 5.11C. The parameter in Fig. 5.11C is the transmitter concentration at
which half of the receptors are occupied. Accordingly, théameter reflects the
transmitter’s affinity. The value ofpest Scales the maximum activation which is
reached when all receptors are occupied, thereby repirgeiso the availability of
receptors. With a single presynaptic spike the transmitb@icentratiorp, remains
far below saturation and its time course is almost the sano¢ @ ++.

In case of ionotropic receptors, which are an integral pathe ion channels,
receptor activation leads to immediate current activatigimout discernible time
delay @& = pr in Fig. 5.11E). The differential equation in Fig. 5.11E ipesially
introduced to account for the multitude of G-protein couplee. metabotropic, re-
ceptors where the ion channels are remote from the traressiittinding sites. In
this case, ion channel activation and inactivation goesutiin a diversity of steps.
All additional time delays are comprised in time constariteegeptors’ activation
Tact @and inactivationtinact. The time delays of metabotropic receptors’ activation
and inactivation are much longer than those of ionotrogcsteown in Fig. 5.11E.

Activation of postsynaptic ion channels induces poststinaprrents which fol-
low the same rules as the voltage-gated ones (see equatiig.ib.11F). Finally,
in the membrane equation in Fig. 5.11E the synaptic culiggf; is added to the
voltage-dependent curreriissty leading to the appearance of postsynaptic poten-
tials (PSPs) in the voltage trabost Additional time delays in the voltage com-
pared to the currents are introduced by the membrane capae@post.

Whether a depolarizing or hyperpolarising postsynapticent is induced, i.e.
whether the synapse is excitatory or inhibitory, dependthertype of postsynaptic
ion channels, more precisely, on the conductivities andliegum potentials of the
ions that can pass (see section 5.3). The type of ion chatiaglsre being opened or
closed, in turn, depends on the receptors to which the triatesmbind. Moreover,
for the same neurotransmitter, different types of recepwodist, e.g., glutamate-
activated AMPA and NMDA receptors. Also, different seconessenger pathways
can be activated, sometimes even with opposite effect@asxample, via D1 and
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D2 dopamine receptors. The multitude of receptors and iameéls provides many
targets for pharmaceutical interference with synapticgraission.

5.6.2 Modeling Synaptic Plasticity and Drug Effects

Compared to physiological reality the presented model iseexely simplified and
could be further simplified depending on the task. In thigrfpit includes major
parameters for the simulation of synaptic plasticity, gtiadisturbances, and drug
effects. Key functions of specific parameters are listethéntéxt box of Fig. 5.11.

Transmitter Release:
Presynaptic Inhibition, Autoreceptors, Depletion, and$icity

Starting at the presynaptic terminal, the first physiolafficrelevant value for reg-
ulation of synaptic transmission is the amount of trangmitteing released. The
model, even in this simplified form, provides a number of pagters and vari-
ables to distinguish between different effects. Among tliethe amplitude of the
presynaptic action potential, manifested/ge which can change depending on the
presynaptic activity. Physiologically, it is systematiganodified via presynaptic
inhibition which uses pre-depolarisation for gradual Negnel inactivation. In the
actual model version, such effects would be achieved withtiad of an external,
pre-depolarizing current to the presynaptic membranetamua

Another type of presynaptic inhibition acts via the redoctof presynaptic Ca-
inflow. This can be modeled with elevation of the threshgjdbr, in a simpler way,
with reduction ofcs ke Which are both shown in Fig. 5.11B. The scaling parameter
Cspike Can also be used to account for presynaptic plasticity eratibns of presy-
naptic transmitter availability, e.g. on application of me@amino-oxidase (MAO)
inhibitors. An important physiological feedback loop fbetcontrol of neurotrans-
mitter release is activated via autoreceptors in the p@gstfomembrane, as shown
in Fig. 5.2. This can be simulated, in a simplified form, witakng cspike as a
function of the transmitter concentration in the synaplaftae 1.

Transmitter Concentration: Degradation and Re-uptakebitbrs

The transmitter concentration in the synaptic cleff; in Fig. 5.11C) is a key vari-
able of synaptic transmission determining the activatibpastsynaptic receptors.
The relevant control parameter is the time constant of trater eliminationTejim
which accounts for diffusion, degradation, and re-uptakee active processes of
degradation and re-uptake are targets of drugs in a muitinfdliseases. A good
example is treatment of a muscle disease, Myasthenia gnaitls inhibition of
acetylcholine degradation [15].
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At most synapses, the transmitters are not only degradealbatre-uptaken
from the synaptic cleft back into the presynaptic terminabé recycled for further
transmitter release. This is done by specific transporemmst(see Fig. 5.2), which
are again targets of drugs for the treatment of various dissd-or example, specific
serotonin re-uptake inhibitors (SSRIs) are among the mimtlwused drugs in ma-
jor depression [64]. The primary effect is the strengthgrmhsynaptic transmission
due to prolonged presence of the transmitters in the clefivéver, also side-effects
have to be considered, e.g. stronger activation of autpteceand reduced trans-
mitter release. At the postsynaptic site, prolonged octopa&f the receptors can
lead to their removal from the membrane, i.e. internal@atr down-regulation.

Direct drug effects on transmitter degradation or re-upteé&n be implemented
in the model with adjustment of the time constant of tranwmglimination {e|im,
Fig. 5.11C). An example of how a pathologically reduced nandj receptors can
be compensated by re-uptake inhibition is given in [45].ddelary effects on au-
toreceptors can be mimicked as described above. For doguiatéon of postsynap-
tic receptorsy post Needs to be scaled as a function of receptor activaijon

Postsynaptic Receptors: Agonists and Antagonists, UpDavan-Regulation

Postsynaptic receptors, the binding sites of neurotratters, are targets for a mul-
titude of drugs acting as receptor agonists or antagorii$ts.action of receptor
agonists can be considered in the model with a corresporadingentration term
added tocgeft, also with implementation of specific pharmacodynamicsn@et-
itive receptor antagonists will lead to a concentratiord affinity-dependent shift
of the Michaelis-Menten curve to the right (Fig. 5.11D) whican be introduced
by increasingc;. In contrast, non-competitive antagonists do not occupybind-
ing sites but prevent receptors’ activation by prohibitthg necessary conforma-
tional changes. Accordingly, their action needs to be aereid in a different way;
i.e., by a reduction of post corresponding to the reduced number of receptors that
can be activated. The parametgss: can be connected to other physiological and
pathophysiological processes, e.g., the above mentidifiectof antagonists and
receptor up- and down-regulation.

Second Messenger Systems / Postsynaptic Currents andi&sten

The diversity of second messenger systems is beyond thes swfoghis chapter.
However, adjustment of activation and inactivation timastants {act andTinact) in
Fig. 5.11E allows considering alterations of these proeessgeneral form. In case
that more detailed simulations need to be implementedetpasameters provide an
interface connecting them with the actual model.

For the next steps, from ion channels activation to postsmaurrents and po-
tentials, the same rules apply as for neuronal excitabiligeneral (see section 5.4).
The relevant control parameters are the maximum condue@nend the reversal
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potentialV; of the ligand-gated ion channels. Additional effects carnbeduced
via alterations of the membrane potential of the postsyoayguron due to inter-
nal dynamics and synaptic inputs also from other sourcesit®lat strong effects
appear during action potential generation. An examplevsrgin [44]. Alterations
of the driving force can also be induced via the reversal eV, as the result of
changed ion concentrations and calculated by the NernstiequEq. 5.6).
Scaling the maximum conductangeallows to consider alterations of the num-
ber of ion channels which can be activated, for example, dutadilitation of
NMDA receptor activation and increased conductivity of AMReceptors in the
early and late phase of synaptic plasticity. Furthermgrés a major parameter for
implementation of pharmacologically important effectsaf channel blockers.

5.7 Applications:
Neurons and Synapses in a Model of Sleep-Wake Regulation

The previous sections have illustrated how neuronal ebsitityaand synaptic trans-
mission can be simulated with a simplified yet flexible cortdnce-based approach.
Let us conclude this chapter by presenting an example of a&hsydtem that com-
bines the diverse aforementioned parts for the developwfemiphysiology-based
model of sleep-wake regulation. Sleep-wake regulationge@d example showing
the challenge introduced by interdependences of physidbgrocesses along the
vertical and horizontal scales (see Fig. 5.1).

5.7.1 Sleep-Wake Control: Mechanisms and Models

Several brain nuclei change their activity along the trimss between sleep and
wakefulness. These include diverse nuclei in the hypothasa brainstem, and the
thalamocortical circuit which are all connected to eacleotireating a complicated
system of interdependences as shown in Fig. 5.1B (for rese\[53]).

In the hypothalamus, there are at least three nuclei thgitgafaajor role in sleep-
wake regulation. These are the suprachiasmatic nucleuN)(S@e ventrolateral
preoptic hypothalamus (VLPO), and the lateral hypothateamea (LHA). Neurons
in the SCN constitute a master circadian clock which is eém#ch by the light-
dark cycle. By contrast, activity of the VLPO and LHA neurdsistate-dependent.
VLPO neurons are silent during wakefulness and firing dusiegp [56]. Just the
opposite is seen in a subpopulation of LHA neurons co-relgawrexin and gluta-
mate. These are silent during sleep but firing during wakefss [27, 36].

The sleep-wake centers in the hypothalamus are conneati@tetse monoamin-
ergic and cholinergic nuclei in the brainstem. These nwakeinvolved in the regu-
lation of ultradian rhythms during sleep [33], and providejpctions to other brain
areas such as the thalamus.
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Thalamic neurons, in feedback loops with cortical neuraimw significant
changes of impulse patterns and synchronization at sledq-wansitions [35]. In
the wake state, thalamic neurons exhibit unsynchronizeid foing activity, while
they change to synchronized burst discharges during slaghis way, the thala-
mus opens and closes the gate for sensory information tiasiem to the cortex for
conscious perception (e.g. [3]). When the external inpuedsiced, populations of
cortical neurons tend to synchronize as indicated by theagmce of slow wave
potentials in the electroencephalogram (EEG) [1, 34].

Different approaches for simulation of sleep-wake traosg can be found in
the current literature. Irrespective of how detailed thes; all refer to the generally
accepted two-process concept [4] which suggests that-gla&p transitions are de-
termined by the interaction between a circadian and a hotagoprocess. The cir-
cadian process can be related to the genetic clock in the 88]NThe homeostatic
mechanisms are usually attributed to the accumulation agdadation of somno-
gens, like adenosine, as considered, for example, in thehigeld models [43]. A
completely different concept proposes sleep-wake depdrsy@aptic plasticity as
a homeostatic mechanism underlying cortical synchroiund61].

Our focus is laid on the recently discovered substance org@X) which is a
co-transmitter of only several thousands of neurons indter&l hypothalamus [59,
62]. Despite their small number, these neurons influencestithe entire brain
with densest projections to the brainstem and thalama@ditircuits. It was shown
that lack of orexin neurons or reduced availability of oreiself as well as of its
postsynaptic receptors leads to narcolepsy which is cteriaed by unpredictable
transitions between wakefulness and sleep [31, 13].

Assuming that alterations of orexin levels are also cotit@hatural sleep-wake
transitions, we have developed a novel concept of homeostatp-wake regula-
tion [47]. This concept has been transferred into a condweetdased model repre-
senting dynamics of neurons and synapses with activitexdeent decline of orexin
effects during wakefulness and recovery during sleep. émjginting the experimen-
tally well demonstrated projections from orexin neurongh® thalamus and mod-
eling thalamic neurons as single neuron pattern generaaerg section 5.6, we
have demonstrated alterations of thalamic synchronizaiates developing form
changed orexin input. A brief preliminary report of this Wdras appeared in [48].

5.7.2 Modeling Hypothalamic Control of Thalamic
Synchronization

For these simulations we need to connect neuronal popntatd different brain
areas. Nevertheless, we have continued with the condwetaased modeling ap-
proach, but with significant simplifications in other respdte different neuronal
populations are represented by single neurons conneciesingle synapses (Fig.
5.12A). This reduced modeling concept was chosen not fateshiog the simula-
tion time, which is often the main objection against condace-based models. It
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was chosen because our goal was to specifically examine treardys of synaptic
plasticity in context with neuronal excitability. Averadjealues from a large number

of neurons or neuronal populations would complicate thdystir may even prevent
the elucidation of the physiological mechanisms at theutzllevel.

A thalamus %

hypothalamus

0:00 6:00 22:00 6:00 22:00
B a SLEEP WAKEFULNESS SLEEP WAKEFULNESS

e b, 2 e ]
[nwAm’] 0
0 24 48
time [s]

C

time [s] 37

Fig. 5.12 A model of hypothalamic sleep-wake regulation controllthglamic synchronization.
A: Structure of the sleep-wake model consisting of a red@akexcitatory circuit in the lateral
hypothalamus with synaptic connections between an orédi) @nd a local glutamate (GLU)
neurons. The OX neuron receives circadian input from theasigasmatic nucleus (SCN) and
sends synaptic projections to two gap-junction coupleththez neurons (TH). B: (a) Sleep-wake
transitions along 24 h days and corresponding alteratibmslevant model parameters on a 24 s
time scale showing (b) voltage traces of a TH neuron withsiteons from tonic firing to bursting,
(c) the activation variable of synaptic orexin release,t(d@hsitions from silent to firing states of
the OX neuron, and (e) the circadian input. C: Voltage traxfgg) synchronized bursting and (b)
asynchronous tonic firing of the two thalamic neurons from @bove simulations plotted on an
enhanced time scale. Modified and merged from [47, 48].

In the core of the model, shown in Fig. 5.12A, there is a rexpl excitatory
circuit which is built up of an orexin neuron and a glutamateineuron [30]. The
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orexin neuron, which is a glutamate neuron with orexin as-gaasmitter, receives
additional input from the circadian pacemaker in the fornraagfradually changing
current, corresponding to compound synaptic input from3I@N. Simulation of
thalamic synchronization requires a minimum of two neurdrss simple network
comprises all of the components of our conductance-baseelng approach:

1. Hypothalamic neurons are realized with the simplestoarsf a two-dimensional
HH-type model - as described in section 5.4.

2. Thalamic neurons additionally include subthresholdenis allowing transi-
tions between different types of impulse patterns - astilied in section 5.5.

3. Connections between the two thalamic neurons are madagjugctions with
alterations of the synchronization state depending on thigity pattern - as
shown in section 5.6.

4. Hypothalamic neurons make connections via chemicalpsgsgmwhich allow
accounting for activity-dependent synaptic plasticitys-naentioned in section
5.7.

The dynamically relevant mechanisms of homeostatic sleepral are imple-
mented via activity-dependent alterations of orexin affe€iring of orexin neu-
rons during wakefulness is only sustained by reciprocaitatary connections,
among others, with local glutamate interneurons [30]. Thpdiiarizing effect of
the co-transmitter orexin is obviously essential to keeprthn an excitable state.
To account for the transition to a silent sleep state, we fpagposed an activity-
dependent change of the synaptic efficacy of orexin, i€.retluction due to the
firing of orexin neurons. This leads to an increasing sleegedsimilar to the en-
hanced tendency to falling asleep with lack of orexin in o&psy.

In the original model, the synapses have been implementidadditional sim-
plifications compared to the model in Fig. 5.11, e.g., rataturrent activation di-
rectly to the transmitter concentration and distinguighinetabotropic orexin ef-
fects from ionotropic glutamate effects by longer time gslaf activation and in-
activation (for details see [47]). For consistency, we rréfethe equations of Fig.
5.11 in the description of the state-dependent alteratidraexin effects, which
have been introduced by a modulation functMscaling postsynaptic receptor and
current activation, respectively:

da _M-pr &

with 0<M<1 (5.20)
dt Tact Tinact
dM  M-pr Mpax—M
— = + 5.21
dt Tdec Tinc ( )

Alteration of M can reflect up- and down-regulation of postsynaptic reagspto
Down-regulation, the first term in Eq. (5.20), depends orepéar occupation and is
directly related to presynaptic firing and transmitter asle. Up-regulation is imple-
mented as an ongoing process of receptor re-embeddingds\@anaximum value
Mmax In a similar way, activity-dependent depletion of pregytatransmitter avail-
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ability and its re-synthesis can be considered, with the ttonstantggec and Tinc
determining the time scale on whidh is decreasing and increasing, respectively.

To save computational time, most simulations as those inFig®B and C were
run with circadian cycle periods of 24 seconds instead of@4$ The homeostatic
mechanisms can easily be scaled up to 24 hours multiplyiagjrie constantsyec
and 1jnc by a factor of 3600 (seconds/hour) as demonstrated in tlggnatipaper
[47]. None of all the other parameters needs to be changedrapdrtantly, neu-
ronal spike generation and synaptic transmission retain thalistic time-course.

The circadian inpulgr to the orexin neuron is modeled in form of the skewed
sine function (Fig. 5.12Be) as proposed in [14]. At a certaiput strength, the
orexin neuron is activated. When the orexin neuron has ezhaltertain firing rate,
it activates the glutamate interneuron - provided suffidyestrong contribution of
the co-transmitter orexin. When this state is reachedgfinrboth neurons sustains
due to their reciprocal excitation (Fig. 5.12Bd, illustdtby voltage trace of the
orexin neuronYoy). The neurons continue to fire also when the circadian input d
creases below the level of spike initiation or even withaut enput. When firing in
the reciprocal circuit is established, it will only be intepted by the impairment of
synaptic transmission due to activity-dependent redaaiicsynaptic orexin effects
as described above. When the postsynaptic effieggyFig. 5.12Bc) is going be-
low a certain value, the orexin neuron cannot longer adcitia¢ glutamate neuron.
The reciprocal excitation is interrupted, and firing stofisthis point, also the input
from orexin neurons to the thalamic neurons is interrupted.

Thalamic neurons are modeled as pattern generators, ldsetim section 5.5,
with synchronization properties, which are described ittisa 5.6. The excitatory
synaptic input from the orexin neuron during wake keeps Itfadaimic neurons in
a depolarized state with tonic firing activity which is onligbtly changed by the
decreasing activation variable. Absence of this depdtagimput during the silent
state of the orexin neuron does not completely stops theyfofrthe thalamic neu-
rons as in the case with the local glutamate interneuron.tfiédlemic neurons re-
main active, but the temporal pattern of impulse generatianges from tonic fir-
ing to bursting. These transitions are sufficient to bring ¢fap-junction coupled
thalamic neurons from an asynchronous (Fig. 5.12Cb) to alsymized state (Fig.
5.12Ca). This is exactly what could be expected from thénsic dynamics of tha-
lamic neurons under the influence of external currents asritbesl in section 5.6.
And it exactly corresponds to the experimentally obsenlehges in thalamocorti-
cal circuits at the transitions form wakefulness to sleeh B5].

In this conclusive simulation section, we have combinedmadels of neuronal
excitability, pattern generation, and synchronizatiothwecently developed simu-
lations of synaptic plasticity in homeostatic processesafointegrative approach
connecting hypothalamic and thalamic systems of sleepewedulation. The con-
nections were made between individual neurons with singtagses which like-
wise may represent a compound input from one brain nucleasother. In this
case, however, the relevant input is provided by the adtimatariable of postsy-
naptic receptorsy. The amplitude and time-course af depend not only on the
synaptic strength but, due to the superposition of the poaf#ic currents, also on



124 Svetlana Postnova, Christian Finke, Martin T. Huber) Kaigt and Hans A. Braun

the firing rate. In the reciprocal circuit, the firing rate essally depends on the
input from the other neuron and, in case of the orexin neusoagditionally mod-
ulated by the circadian input. The activation variablelitsescaled as a function
of the firing rate, i.e. transmitter or postsynaptic receptcupation. Such complex
interdependences can only be recognized with a conductzased approach. They
are developing from basic physiological processes and faienational relevance
for the model dynamics [47].
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